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In this paper the effect of a small-amplitude progressive wave on the laminar 
boundary layer on a semi-infinite flat plate, due to a uniform supersonic free-stream 
flow is considered. The perturbation to the flow caused by the wave divides into two 
streamwise zones. In the first, relatively close to the leading edge of the plate, on a 
transverse scale comparable with the boundary-layer thickness, the perturbation 
flow is described by a form of the unsteady linearized compressible boundary-layer 
equations. In the free stream, this component of flow is governed by the wave 
equation, the solution of which provides the outer velocity conditions for the 
boundary layer. This boundary-layer system is solved numerically, and also the 
asymptotic structure in the far downstream limit is studied. This reveals a 
breakdown and a subsequent second streamwise zone, where the flow disturbance is 
predominantly inviscid. The two zones are shown to match in a proper asymptotic 
sense. 

1. Introduction 
Much work has been carried out on the response of a two-dimensional 

incompressible laminar boundary layer on a semi-infinite flat plate to time-harmonic 
oscillatory perturbations (particularly those of infinite wavelength in the streamwise 
direction) of the free stream. Most of the effort has been involved with small- 
amplitude perturbations ; included in this category are the works of Lighthill (1954), 
Lam & Rott (1960) and Ackerberg & Phillips (1972). Close to the leading edge, the 
flow is of Blasius type, whilst far downstream the boundary layer takes on a double 
structure, comprising an inner Stokes-type layer, and an outer Blasius-type layer. 

Numerical investigations of this small-amplitude problem, describing the flow 
from the leading edge to far downstream, have been conducted by Ackerberg & 
Phillips (1970) and Goldstein, Sockol & Sanz (1983). Some details of the far- 
downstream behaviour of this problem have in the past been the subject of some 
controversy. At  large distances downstream of the leading edge, a set of 
eigensolutions must exist, which decay exponentially downstream (this reflects the 
effect of the particular conditions prevailing upstream). One set of eigensolutions 
found by Lam & Rott (1960) and by Ackerberg & Phillips (1972) is determined by 
conditions close to the wall, and has decay rates that decrease as the order 
increases (and so the most important modes are those of highest order). A second set 
of eigensolutions has been found by Brown & Stewartson (1973 a, b ) ,  and these are 
determined primarily by conditions at  the outer edge of the boundary layer, and are 



424 P .  W. Duck 

characterized by a decay rate that increases with increasing order. Some discussion 
of the relationship between these two sets of modes is to be found in Goldstein et al. 
(1983). 

Further downstream still, Goldstein (1983) showed how the eigensolutions of Lam 
& Rott (1960), which initially decay, develop into classical, high Reynolds-number- 
limit TollmienSchlichting modes (including unstable modes) for Blasius- type 
boundary layers. Although the Lam & Rott (1960) eigensolutions decay downstream, 
they also oscillate with increasingly rapid (spatial) frequency, and far downstream, 
transverse and streamwise gradients must become comparable, giving rise to an 
entirely new structure in which transverse pressure gradients play a key role. 

Returning to the boundary-layer problem, non-small oscillations of the free stream 
(but still limited to non-reversing free streams) have been tackled by Moore (1951, 
1957) and Pedley (1972) for regions close to the leading edge of the plate, and it is 
again found that the flow is Blasius like. Lin (1956), Gibson (1957) and Pedley (1972) 
studied the far downstream region, and found that the flow takes on a double 
structure similar to that observed in the analogous small-amplitude case. Duck 
(1989) has presented numerical results which extend from the leading edge to far 
downstream, in this case. 

All these aforementioned papers were concerned with purely temporal flow 
oscillations (i.e. oscillations of infinite streamwise wavelength). The effect of a small- 
amplitude progressive wave on an incompressible boundary layer has been 
investigated by Kestin, Maeder & Wang (1961) and Patel (1975). The former authors 
considered the low-frequency limit to the problem, for the very particular case when 
the wave speed equalled the mean far-field velocity. Patel (1975) gave results for 
both high and low frequency, the latter being obtained using an empirical momentum 
integral approach. A number of experimental results were also presented, and 
compared with theory. 

In this paper we consider the effect of a small-amplitude two-dimensional 
progressive wave in a supersonic free stream, on a laminar boundary layer on a flat 
plate. Here the situation is rather different to the incompressible case in a number 
of respects. Although eigenfunctions similar to those of Lam & Rott (1960) 
undoubtedly exist, these are not expected to develop into growing Tollmien- 
Schlichting waves (at least not in the case of two-dimensional flows - see Ryzhov 
& Zhuk 1980 and Duck 1985). As a result, although planar Tollmien-Schlichting (i.e. 
viscous) waves are present downstream, these are expected to be of little consequence. 
The dominant planar modes of instability are likely to be inviscid in nature; however 
Smith (1989) and Duck (1990) have shown, using triple-deck theory, that oblique 
viscous modes do exist in supersonic boundary layers (confirming the numerical work 
of, for example, Mack 1984). Indeed, it is found that viscous modes can dominate 
over inviscid modes a t  low supersonic Mach numbers, at all but extremely large 
Reynolds numbers. In this paper, as well as presenting results for the boundary-layer 
region, we go on to consider the development of the unsteady component of flow far 
downstream, which turns out to be predominantly inviscid. 

A related study involving the forced response of a boundary layer (at finite 
Reynolds number), disturbed by an oblique, moving wavy wall has been considered 
by Mack (1975) ; additional results for this problem have been given by Mack (1984). 

The layout of the paper is as follows: in $2 we consider the ‘fore region ’ in which 
the flow close to the plate is governed by a form of the compressible boundary-layer 
equations. We look a t  the downstream limit of this zone, and then in $3 we consider 
the downstream region, wherein transverse variations of pressure become important ; 
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the regions studied separately in $52 and 3 are seen in $4 to match (in an asymptotic 
sense). Finally in $5 we present a number of conclusions. 

2. The fore region 
We consider the viscous supersonic two-dimensional flow over a semi-infini te, 

stationary plate. We take the origin at the leading edge of the plate, x the coordinate 
along the plate, y the coordinate normal to the plate, and u and v the velocity 
components in the x-  and y-directions respectively. t denotes time, p the fluid density 
and p the first coefficient of viscosity of the fluid. p and T are defined to be the 
pressure and temperature in the fluid; cp(c,)  is the specific heat of the fluid a t  
constant pressure (volume), and u = p c , / K  is the Prandtl number (K being the 
coefficient of thermal diffusivity); c p ,  c, and u are all assumed to be constants. 
Subscript co will be used to denote far-field, unperturbed conditions. 

The fluid is also assumed to satisfy the following equation of state: 

P = PRT, (2.1) 

where R = c P - c , .  (2.2) 

We consider first the fluid in the far field, where the effects of viscosity are expected 
to be negligible. In this region, we take the flow to comprise a uniform steady stream 
parallel to the plate, perturbed by a small-amplitude ( O ( E )  -4 1) progressive wave. 

We therefore write 

u = u, + €U1(X,  y, t )  + . . . , v = € V 1 ( X ,  y, t )  + . . . , 
p = p ,  + €pl(x ,  y, t )  + . . . , T = T, + e!P,(x, y, t )  + . . . , 
P = Prn+Vp,(X,y,t). 

(2.3) 

The leading-order equation of state gives 

Pm = PWRTW. (2.4) 

Substitution of (2.3) into the momentum equations and continuity equation yields 
(at O ( 4 )  

pwr2+um- aul) ax --L - : ' 

pm@+um2)=-+ aP 

2Pl aP 3% au1 - -+U,'+p,'+p,- - 0. 
at ax ax a Y  

If we write 
a: = yRT,, 

with y = c p / c ,  (assumed constant), (2.9) 

where a,  denotes the speed of sound in the far field, then from (2.5)-(2.7) we have 

(2.10) 
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We now seek progressive-wave solutions of this equation, writing 

p, = $l{exp [ia(x-cct+Ay)]+exp [ia(x-ct- Ay)]} (2.11) 

(corresponding to an oblique wave, in general), there l;l is a constant. Substitution 
of (2.11) into (2.10) reveals that we must have 

(2.12) 

where M ,  denotes the unperturbed free stream Mach number, Uw/am. 
It is now possible to write the progressive-wave solution for u1 and vl, namely 

(2.14) 

Equation (2.14) also satisfies the normal flow condition, although the no-slip 
condition is violated by (2.13), since 

Notice in particular that in the case of plane waves ( A  = 0 ) ,  

(2.15) 

(2.16) 

v1 = 0 (2.17) 
(whilst (2.15) is unaltered). 

The slip velocity is reduced to zero, in the usual way, by the inclusion of a thin 
boundary layer. The boundary-layer approximation reduces the governing equations 
to (Stewartson 1964) 

aP a p -+u-+u- =--+- p- (E E) ax ay( :)> 
a a 

at ax a Y  
*+-(pu)+-(pv) = 0, 

pcp =-+u-+v- ---?A,---=- pup- +p  - (2.20) 
ap a c a  r' E E) Z ax a,( gag (Eyj 

(2.18) 

(2.19) 

(2.21) 

(together with (2.1)). 
These equations can be simplified by the use of a generalization of the 

Howarth-Dorodnitsyn transformation, suggested by Stewartson (1951) and Moore 
(1951). We write 

(2.22) 
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where P now replaces y as the independent transverse variable, and $ is essentially 
a stream function. Then 

(2.23) 

and the equations of motion and energy reduce to 

On account of (2.21), we have written 

24x9 P, t )  = PI@, t ) .  (2.26) 

The usage of the stream function ensures that the continuity condition (2.19) is 
satisfied. 

We now seek a solution to (2.24) and (2.25), subject to the boundary conditions 

(2.27) 
3T - 
- (Y  = 0) = 0, aP 

T(  P-t a3 ) --f 1 + O(E), 

$(P= 0) = $y(P= 0) = 0, 

(2.28) 

(2.29) 

(2.30) 

At this stage we must specify the particular viscosity/temperature model, and 
here we choose the simplest example, namely the linear law of Chapman (see 
Stewartson 1964), 

where C is the Chapman constant. 
We now seek a perturbation solution (in powers of E )  ; we write 

$ = ..., T = T g + E F +  ..., 
p = p o + € p +  ...) P = &+a+ ... ) 

p ,  =pWRTm+ef5+ .... 
Substituting (2.32) into (2.24) and (2.25) yields, to O(E'), 

(2.31) 

(2.32) 

(2.33) 

(2.34) 
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The solution of $o (and TO)  is now routine, and merely corresponds to  the similarity 
form of Blasius. Writing 

where 

(2.35) 

and S is a measure of the boundary-layer thickness, then 

Fr+FoFE = 0, 

(2.37) 

(2.38) 

(2.39) 
1 
-G,”+FoGh+(y-1)M2mF,”2 = 0. 
cl 

The boundary conditions to be applied are 

Fo(0) = Pb(0) = 0, 

Gh(0) = 0, 

Fa( CO) = 1, 

G , ( W )  = 1. 
(2.40) 

The O ( E )  equations are rather more complicated, although their derivation is 
straightforward. The momentum and energy equations a t  this order are, respectively, 

&Y~t+$oYo&xYo+$OxYo%JY,-$Oz &YoY,-%Jx$oY,Y, 

Our primary concern here will be with the momentum equation (2.41) (although a 
similar treatment may be carried out on (2.42)). 

We already have (2.35)-(2.37), and now we write 

(2.43) 

where ( = xi. (2.44) 

These transformations, when applied to (2.41) yield the following equation for 
Fl(T3 5):  

2iac 
~ ~ ~ ~ , + ~ o ~ l , ~ + ~ ~ ~ o , , + o : , 5 2 F ~ , - - 5 F , , ~ l , ~ +  f;F,sFo?pl 
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FIUURE 1. (a) Re{-F,(v = O)/teicq/3 distribution; (b) Im {F7,,(~ = O)/ieicq/3 distribution 
M ,  = 2 / 2 ~ =  I-I/Mm. 

a may beA completely eliminated from the problem by introducing the new scaled 
variable f 

I =  ( - ) f .  ca 

UW 

It is also convenient to introduce the non-dimensional wave speed 

F = c/um, 
and so (2.45) becomes 

(2.46) 

(2.47) 

Flqq, + Fo Fl,, +Fl Fo,, + 2iPF1, - @O,Fl,[+ @l[FO, 

erf/'--1/2M2,(c- 1) eiE'i'Fo,,,, (2.48) 

subject to 
Fl(v = 0) = dj1,,(v = 0) = 0, F1,-+ei~'/' as v +  co. (2.49) 
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FIGURE 2(a, b) .  As figure 1 except C =  1 + l/Mw. 

This equation may be viewed as the compressible counterpart of the work of Pate1 
(1975), and also of Ackerberg & Phillips (1972) (and others cited previously) which 
was specifically concerned with temporal oscillations. 

= 0 in (2.48), which 
yields the following (ordinary) differential system : 

Initial conditions for this system were obtained by setting 

(2.50) 

and then solving for Fl (using (2.49) as boundary conditions). 
Equations (2.38)-(2.40) were solved numerically, using a second-order finite- 

difference scheme, in which the momentum and energy equations were split into 
three and two first-order differential equations respectively, and solved iteratively 
using Newton's method. F o ( ~ )  and Go(q) were then put into (2.48); this (linear) 
equation was solved using % similar second-order finite-difference scheme in q, 
Crank-Nicolson marching in 6, again by splitting the equation into a system of first- 
order equations in q . 

Results for e-ic 'cFl,Jq .= O ) / $  are shown in figures 1 4  (this quantity being linked 
directly to the pertinbation wall shear). In all cases we set y = 1.4, v = 0.72, h = 0 
(plane waves) and the results are believed to be correct to within the graphical 
tolerance of the figures. Figure 1 (a, b)  shows results for M ,  = d 2 ,  F = I - l/N,, 

i- ) 
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FIGURE 3(a, b ) .  As figure 1 except M ,  = 5. 

figure 2 (a,  b) for M ,  = d 2 ,  c = 1 + l/M,, figure 3(a, b)  for M ,  = 5,  F = 1 - l/M,, 
and figure 4(a,  b) for M ,  = 5 ,  c = 1 + l/M,. 

It is readily apparent from these results that as g+ co (i.e. far downstream), 
e-'~'l'FlW(q = O ) / g  asymptptes to a constant, and it is a simple matter to confirm this 
analytically. 

From (2.48), we have as l-+ 00 

2i&F1, - b0, Fl,g+ &gFOw = 2iG0(q) &( 1 - l/c) eie/a. (2.51) 

The inclusion of the second and third terms here is most easily justified by 

x = p ,  (2.52) 

whence iF,,-Fo,Fl,,+Fo,Fl, = iGo(q) (l-l/C)eiX/". (2.53) 

Writing Fl(9,X) = &11) elX/? (2.54) 

transforming to  the (non-dimensional) streamwise coordinate X, where 

then 

This solution generally violates the no-slip condition on q = 0, since 

Plq(q = 0) = Go(0) (1 - l/C). 

(2.55) 

(2.56) 
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FIQURE 4(a, b ) .  As figure 2 except M ,  = 5. 

However this is easily rectified by the inclusion of a Stokes layer, where 

Y = ?j( = ?jx; = 0 ( 1 ) ,  

and 

Writing F,(Y,x) =fl(~)eix/6,  

Flyyy  + 2iFIy = 2iG0(0) (1 - l /C)  eiX/'. 

then flY(y) = GJO) (1 - I/C) [I -e-(l-i)y], 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

which does satisfy the no-slip condition on Y = 0 and also as Y-t co matches to (2.55) 
as ? j + O .  Equation (2.60) then gives 

Fl,,,,(q = 0 )  = ~ e i ~ ' / ~ G o ( 0 ) ( l - l / c ) ( l - i ) .  (2.61) 

This is shown as an asymptote on figures 1 4 ,  and the result is seen to be confirmed. 
Equation (2.55) does admit the possibility of a singularity, wherever 

Fo, = C, (2.62) 
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and a critical layer is necessary ; this is of standard form, of the type described by Lees 
& Lin (1946). 

Unfortunately the above expansion is not uniformly valid as j-+ CO. This is most 
easily seen by comparing the magnitude of the transverse pressure gradient splay = 

O(p, V,/S) with the transverse inertia terms (in particular the puv, term), namely 

Hence there will be a breakdown to the above solution when 

x = o  - k?)? 

(2.63) 

(2.64) 

when the transverse pressure gradient can no longer be neglected. In the following 
section we go on to consider the repercussions of this. 

One final point is that eigensolutions analogous to those described by Lam & Rott 
(1960) are certainly expected to occur far downstream (although their magnitude is 
exponentially small, and as such they were undetectable in our numerical results) ; 
however, as noted in the previous section, unlike the subsonic case, in the supersonic 
planar case currently under consideration, these eigensolutions are likely to be of 
little consequence because of the stability of planar Tollmien-Schlichting waves (in 
particular those captured by triple-deck theory) in supersonic flow. 

However, it  has been shown by Smith (1989) and Duck (1990) that unstable, 
oblique viscous modes in supersonic flows may be described by triple-deck theory. 
Consequently, we may expect that an appropriate study, based on the ideas of Lam 
& Rott (1960) and Goldstein (1983) would likely lead to eigensolutions which, far 
downstream, would become unstable. However, this aspect is not considered here; as 
specified earlier in this paper we concentrate solely on planar flows. 

3. The far downstream region 

will become significant in the physics of the boundary layer when 
As noted a t  the end of the last section, unsteady transverse pressure fluctuations 

x = o  - t,?). 
This implies (and is consistent with) 

y = O(a-'), 

implying that the transverse scale (i.e. the boundary-layer thickness) is comparable 
with the wavelength of the imposed wave. At the same time, the streamwise 
lengthscale of the wave (ap1) is much shorter than the local developmental length of 
the boundary layer (i.e. (3.1)), and so the parallel flow approximation is a rational 
procedure, and is adopted here. 

We choose to make the following non-dimensionalizations : 

(3.3) 
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Here 6 represents the boundary-layer thickness (given by (2.37)). We then expect 
the solution to  develop as follows 

(3.4) 

a = U(y)+€f (y)E+ ..., B =  €Q(Y)E+ ... ) 
p =  I+@(y))E+ ..., P =  T(y)+€B(y)E+ ..., 
#L = p(y )+€R(g)E+ ..., 

E = eiE(Z-Ct) with > 

and where p(q )  and T(g)  denote the mean flow speed, density and temperature 
respectively. (More formally, weak, non-parallel effects could be included by 
introducing the slowly varying streamwise variable x1 = xQ, and allowing the 
perturbation terms in (3.4) to be functions also of this variable ; however, these 
effects will not be considered in this study). 

The governing equations are then found to be (Lees & Lin 1946) 

(3.5) 

i(O-@R+p(cp'+if)+p'cp = 0, (3.7) 

R B  p = -+= 
p T' 

(3.9) 

After some simple manipulation (following Lees & Lin 1946), we arrive a t  the 
following equation for q : 

(3.10) 

(It is worth noting at this stage that the analogous governing equation of Mack 1984, 
1987 appears inconsistent with this equation, and should be, in Mack's notation 

(3.11) 

This form is entirely consistent however, with the form given by Mack 1965.) 

transformation 
Finally, we follow the same approach as used previously, by using the 

- 
(3.12) a Y  - _  

- = P(Y)  
aB 

(analogous to (2.22)) and so (3.10) becomes 

(3.13) 

(3.14) whe.re U(P) = Fi(F), T(Y)  = G,,(F), 
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FIGURE 5. (a) Amplitude of /3 and ( b )  phase of /3, for M ,  = d2, h = 0.1, C =  1 - (1  +ha$/M,. 

with Fo(P) defined by (2.38), and Go(E) by (2.39), with P replacing 7. 
The boundary condition on P = 0 is - 

rp(Y = 0) = 0, (3.15) 

corresponding to the impermeability condition. As E-t CO, we require the match 
with the progressive-wave solution. From the previous section, this condition can be 
described by the superposition of an incoming and outgoing wave, if 

rp eidL\p +pe-iz~ihp as Y+co. (3.16) 
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p is a reflection coefficient, which is to be determined as part of the solution. The 
wavespeed F is given by 

1 
E =  lk-(l +h2)i (3.17) 

Ma3 

on account of (2.12). The problem then may be thought of as that to determine p, 
given h (generally complex), M,, and Z. 

Anticipating a numerical treatment of (3.13) (or its equivalent), we choose to 
follow a formulation suggested by Lees & Lin (1946), writing the system in terms of 
p and P ,  namely 

(3.18) 

- = - 1  . yWa3 z2Ww (0- F) (p 
ap 
ay 

(3.19) and 

(equation (3.19) arises directly from (3.6)). The advantage of using the system (3.18) 
and (3.19) instead of (3.10) (for example) is that (as noted by Lees & Lin 1946) in the 
case of real values of C, such that 

F <  l- l /M, (3.20) 

(classified as a supersonic disturbance), the apparent singularity of (3.10), a t  the 
value of E a t  which 

T(Y)  = W,[O( E) - F]2 (3.21) 

(for C >  l- l /Mm, the quantity !i'-M;(o-~)' in our case will not have a zero), is 
seen by (3.18) and (3.19) to be just a singular point of the ordinary differential 
system, but not of the solution. Thus, from the numerical point of view the system 
defined by (3.18) and (3.19) has clear numerical advantages over other systems, such 
as (3.10). To be consistent with (3.16), we write 

(p = @(y) + eizAP ; 

corresponding to this we write 
(3.22) 

where (3.24) 
AEyW,( 1 - q 

[1-Wm(1-q2]' 
*=  

Substitution of (3.22) and (3.23) into (3.18) and (3.19) yields the following system for 
$(F) and $(E) : 

- - 
- OF @F+iAZeiAap = i*['--M2w('-q21 [7j+ji=eiEAY] I 

Y W m  (0- q O--F I ,  (3.25) [@+eiAzF 

7jp = - iypm & 2 ( 0 - q  [@+eiz~P]-iijhji=eiap, (3.26) 

with @IP-o = 0, (3.27) 

(3.28) 

The system (3.25)-(3.28) was solved using a Runge-Kutta scheme ; in the case of 
real values of F, with 14 -= 1 ,  the numerical scheme may be diverted into the complex 
Y-plane (below the real y-axes) a t  points close to the critical layer, where 0(Y)  = F 
(as described by Mack 1965). 

and, as p+ 00, ee-iz~Pv + $ eiAaiS ~ 0. 
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FIGURE 6. (a) Amplitude of /3 and ( b )  phase of /3, for M ,  = d2, h = 0.25, F = 1 - ( 1  + h 2 ) ~ / M , .  

This solution will in general fail to satisfy the no-slip condition; however, this is 
easily remedied by the presence of a Stokes layer of thickness Y = O( 1) (see (2.56)). 

Figures &lo show the variation of the amplitude and phase (restricted to the 
range - 180" to 180") of the reflection coefficient p, with wavenumber a. We confine 
our results to real values of A ,  and in all cases take the negative root of (3.17) 
(although there is no conceptional difficulty in extending the calculation to complex 
A, or taking the positive root in (3.17); indeed, these cases are somewhat easier to 
calculate, since then there no longer exists a critical layer on the real P-axis). 

Results for M ,  = 4 2 ,  A = 0.1 are shown in figure 5(a ,  b ) ;  for M ,  = 4 2 ,  h = 0.25 
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FIGURE 7. (a )  Amplitude of /3 and ( b )  phase of /3, for M ,  = d2, h = 0.5, F = 1 - ( 1  + h2)i/M,.  

in figure 6(a, b ) ;  for M ,  = d2, h = 0.5 in figure 7 (a ,  b ) ;  for M ,  = 4.5, h = 0.25 in 
figure 8(a ,  b)  ; for M ,  = 4.5, h = 0.5 in figure 9 (a, b)  ; and for M ,  = 4.5, h = 1.2168 in 
figure 10(a, b ) .  All these results were obtained for y = 1.4, CT = 0.72. Extensive 
numerical grid experimentation was undertaken, and the results shown are believed 
to be independent of numerical grid, on the scale shown. Generally a grid size of 
A F  = 0.01875, with the grid extending out to P = 120 was used. 
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FIGURE 8. (a) Amplitude of /? and ( b )  phase of /?, for Ma = 4.5, h = 0.25, F = 1 - (1 + A2$/M,. 

One feature that is clearly visible for these computations is that p+- 1 as a+O. 
This (partially) indicates a correct match with the results of the previous section in 
the upstream limit (on account of the non-dimensionalization used to define 6, 
a+O may be interpretated as the upstream limit of these results), in particular with 
(2.14). This match will be studied more formally in the following section. (Further, 
note that the case F = 1 - I/Ma and 6 = 0 corresponds to the ‘sonic’ eigensolutions, 
as studied by Lees & Lin 1946.) 
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FIQWRE 9. (a) Amplitude of p and (b) phase of p, for M ,  = 4.5, h = 0.5, F =  1 - ( 1  +h2)i /M,.  

A second trend observed in the results is the large variation of both the amplitude 
and phase of /3, with 6, as a+ 0 ; this effect appears more pronounced as h + 0 also. 
It turns out that both trends can be described by asymptotic analysis. 

We anticipate that as Z+O, the key scale for h will be O(&) (or vice versa, of 
course). Formally we set 

h = EX, A = O(1). (3.29) 
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FIGURE 10. (a)  Amplitude of p and ( b )  phase of p, for M ,  = 4.5, A = 1.2168, 
G =  l--(l+A*)f/M,. 

Q, =cpo+2cp1+ ..., 
F =  c o + 2 c , +  ..., 

co = 1 - l/Nm, 
c1 = -X'/21M,. 

We then expand cp( P) and F in the following series : 

where, by (3.17), 

(3.30) 
(3.31) 
(3.32) 
(3.33) 
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The boundary conditions to be applied to (3.30) as F+ GO are 

rpo - (1  +PI, rp1p Iv iX(1 -P) .  (3.34) 

To zeroth order in h, equation (3.13) yields 

(3.35) 

(see, for example, Lees & Lin 1946), where KO is a constant which, if (3.35) is to 
match with (3.34), is given by 

KO = +P,/ I ,  

where d F  
- [ T -ML( u- coy 

The O(h*) terms in (3.13) yield the following for rp,: 

- W,( 0-c,) CIKo T+ ( O-co)rplp - u2( F)rp - c, Top 

= F[!P-M“,(~-c0)”[K1+ 

(3.36) 

(3.37) 

( 0 - c o ) r p 0 d ~ ,  (3.38) 
J o  

where K,  is a constant. Imposing the F+ 00 conditions on (3.38) yields 

21MLc,K, = iX(1 -/3), 
and hence, using (3.33), (3.36), and solving for /3, we obtain 

(3.39) 

(3.40) 

This is the key formula determining /3 in this regime. Notice in particular that as 
X + O  (equivalently, increasing ti, maintaining h fixed), we obtain /3+ 1,  whilst as 
A+ co (equivalently reducing E,  maintaining h fixed), we obtain /3+- 1. These 
trends are in accord with the numerical results obtained previously. Notice that 
(3.40) also describes (and indeed confirms) a number of the sharp gradients observed 
in the numerical results. These are due to the mismatch between the limit as h + 0 
(which by the above yields /3+ 1) and the limit as h + 0  (which by the above yields 
/3+ - 1). Consequently if A is small, large gradients of /3 with h as h+ 0 are inevitable. 

Mack (1984) presented a distribution of reflection coefficient amplitude (only) for 
the particular case M ,  = 4.5, h = 1.2168, over a very narrow range of h; this 
corresponds to our set of results shown in figure 10 (a) .  Over the range of @ shown by 
Mack (1984), there are a number of features similar to those found in our results (and, 
indeed there exists a good deal amount of qualitative agreement, although the 
precise details of Mack’s computation are a little unclear). In particular the 
fundamental behaviour of 1/31 as h+O and h+ co detailed above is also to be seen in 
Mack’s (1984) results, together with a maximum value of 1/31 which is attained a t  a 
very small value of h. 

A further feature seen in our results a t  the higher Mach number is the spike in the 
distribution of 1/31. (This feature was carefully checked for numerical accuracy in our 
results ; however, unfortunately there is no evidence of this effect in the work of Mack 
1984, although this effect occurs outside the range of considered in Mack’s 
example.) The reason for this is unclear ; indeed this spike appears to occur at larger 
values of d as h increases, but ultimately subsides in magnitude as h increases. The 
arg (p) distribution with d does not reflect this behaviour. 
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The third trend apparent in the numerical results described above is that, as cw: 
increases, the amplitude of the reflection coefficient appears to very rapidly approach 
unity. We now consider the &+ 03 limit asymptotically (we may equivalently 
interpret this as the far downstream limit of the problem). For this it turns out that 
instead of using (3.13) describing p', the analogous ' P '  equation is the more 
straightforward to analyse. This equation can be written 

(3.41) 

As &+ 03, we expect this equation to take on the following approximate form : 

where 

Ppp-cw:2@P = 0, 

0 = T[T-Wm(8-q2]. 

If we consider the regime of c considered above, we have 

I 
I1 
111 

O > O  for O <  E <  %, 
O = O  for P = Y , ,  
O < O  for P >  Y,. 

(3.42) 

(3.43) 

(3.44) 

We now consider the WKBJ solutions to the system (3.42), with P = Y, being a 
turning point. For 0 < P < Y, we write 

where I* = loy' @hdE. (3.46) 

Notice that (3.45) satisfies the appropriate boundary condition on P = 0 (p' = 

Close to P = Y,, the approximate solution can be written in terms of Airy 
PF = 0). 

functions : 

where q* = &[-O'(y,)]+(P-y,) (3.48) 

(here we are assuming ol(Y,) < 0). Matching PI and PI, demands 

PI, = B,Ai(-T*)+B,Bi(--*), (3.47) 

(3.49) 
B, = 2A, d&[ - ol( yC)]-', 
B, = A , ~ ~ ~ [ - O ' ( Y , ) ] - ) ~ - ~ " I * .  1 1  

In the region Y, < P < 03, the WKBJ solution for P can be written 

/ ~ c ( - B ) ~ d ~ ] + R l e x p [  -icw:[yc(-O)~d~]]. P (3.50) 

Matching PI, and PIII leads to the following expressions: 

together with 

B* = n-i[B,( 1 + i) +B2( 1 - i)] [ - O'( Y,)]' 
2 2/2A+ &P* 

I 

A( 1 + i) P* 
2/ /2[1  +aie2"1*]' 

A, = 

(3.51) 

(3.52) 

15 FLM 219 
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After some algebra, this yields the important result 

(3 5 3 )  

Utilizing these results together with (3.7) yields the following solution for qrrr : 

As F+ 00, we expect 

where (or alternatively) 

Consequently we may write (3.54) in the following form 

A = /It{(--@)g-A}dF, 

(3.54) 

(3.55) 

(3.56) 

P*A exp [i&L4] 
(exp (i&lY)-R* exp ( - 2 i ~ h A  -%AT)}. (3.57) 

- c )  
0 1 1 1  - - 

Comparing this form with (3.16) shows 

cxp [ - 2i&bl]. 1 P = - [  2 + i e-2EI* 

2i + e -2zI*  

(3.58) 

Since, in our case I* is real and positive, and h and A are both real, we have that, as 
&--too, 

This clearly illustrates the unit amplitude oscillation of with E,  as 8 increases, as 
found in our results. Consequently, we see that in this limit, the effect of the 
boundary layer is to cause a reflected wave of the same amplitude as the oncoming 
wave, but with a relative phase shift. 

Notice also, that the result (3.58) also applies in situations in which h is complex. 
In the following section we go on to show formally how the results of this section 
match to those of the previous section. 

(3.59) p + - i e - 2 i ~ A A  

4. The matching of the fore and downstream regions 
Let us first consider the limit of (3.11) as a+O (which as pointed out in previous 

section is equivalent to the upstream limit of the downstream zone). Two lengthscales 
for d emerge. The first, where 

(4.1) 

+ O ( @ ) .  (4.2) 

d = E f j  = 0 ( 1 ) ,  

involves a solution to (3.11) of an incoming and outgoing wave, namely 

p, = e iA$ + pe-iA$ 

We may impose the impermeability constraint on this system, which requires 
P = - 1 and so to leading order 

(4.3) p, = eiA$ - .-Uj 
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this condition matching correctly with the outer fore-region solution (2.14) ; see also 
the analysis in the previous section corresponding to i~ --f 0. 

The second important lengthscale is fj = O( 1 )  itself, where the variation of T and 
0 must be taken into consideration. To leading order we have 

._ 

The solution to  this is 

where the impermeability condition has been imposed, and C is a constant, which is 
determined by matching with (4.3) ; this yields 

This completes the details of the z + O  solution; however, for the purposes of 
matching with the fore region, the simplest illustration is by means of the 
perturbation streamwise velocity f (y). By (3.5) we see that we may write 

The pressure term P is (by (3.6)) seen to be independent of tj to leading order, and 
given by 

P = -iCyWm, (4.8) 

and so (4.9) 

(if O-C, then a critical layer of the type described by Lees & Lin 1946 will be 
present). 

We now compare the downstream limit of the fore region with (4.9). The O(E) 
perturbation to the x-component of velocity, as x+ 00 may be written 

where is defined by 
7 = F(pm um/2pu, XC)4 

whilst 

and PI(@ is given by (2.54) (with 7 replaced by 7);  notice that 

Equation (4.12) may be written 

Here 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

15-2 
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whilst B,(@ is determined from the far downstream limit of (2.42) which yields 

where we have written 
E = e ib (2 -Ct )  , 

Uo(Y) = U m W a >  

c1= --2$1/[(Um-C)PmL 
9 = 2$E. 

Consequently we see that 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

The solution of this equation is 

(4.22) 

We now see that as x -+ GO 

Equation (4.23) may now be written 

Setting C, = iUmC‘/(i-c), 

and noting that G,(!l) = mh 
Uo(Y) = R!l), 

we see that (4.25) matches correctly with (4.9). 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

5. Discussion and conclusions 
I n  this paper a description of the effect of a small-amplitude progressive wave on 

a supersonic boundary layer on a semi-infinite flat plate has been given. I n  this case 
it is possible to rule out the possibility of a receptivity problem of the same form as 
considered by Goldstein (1983), based on the downstream development of Lam & 
Rott (1960)-type eigensolutions, into unstable planar viscous modes (described by 
triple-deck theory), because these latter modes are all known to be stable in the case 
of supersonic flows. However, as noted in $2, in the case of oblique waves, such a 
description, based on the ideas of Goldstein appears possible (indeed, likely). 
Additionally, there appears to be no mechanism included in the present study by 
which initially viscous (damped), planar waves (cf. Lam & Rott 1960) may undergo 



Response of a laminar boundary layer to progressive waves 447 

a metamorphosis into (unstable) inviscid instabilities. However, it may well be that 
a higher-order analysis is necessary, incorporating, for example, boundary-layer 
growth terms (i.e. non-parallel effects) which would give an element of boundary 
curvature, which in turn could trigger receptivity. Indeed, receptivity is found in 
supersonic wind tunnels, caused by sound waves produced by turbulent tunnel-wall 
boundary layers. 

Also included in the present study is a description of the form of the compressible 
Stokes layer, together with the ultimate breakdown of the (boundary layer) structure 
of the perturbation solution which becomes predominantly inviscid far downstream. 
The analysis, together with our numerical results, formally indicate a proper match 
between the two regimes. 

Much of this work was carried out while the author was at NASA Lewis Research 
Center (visiting under the ICOMP program). The author wishes to thank Dr M. E. 
Goldstein for many useful discussions relating to this work. A number of the 
computations were carried out at the University of Manchester Regional Computer 
Centre with computer time provided under SERC Grant No. GR/E/25702, and by 
the University of Manchester. 
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